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Overview

@ Goal: solve Mixed Integer Linear Programs (MIP) “faster”
e Branch-and-Bound (B&B): a general framework for solving MIPs

@ B&B components: presolve, cutting planes, primal heuristics,
branching (this talk)

Branch on which variable?
Tj, Tf, Ty, €tc.”?

Figure: A B&B tree. A node is a sub-problem, an edge is an additional constraint
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Motivation

@ Branching on the “right” variables can have a dramatic impact on
size of B&B tree (i.e. number of nodes)
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Motivation

@ Branching on the “right” variables can have a dramatic impact on
size of B&B tree (i.e. number of nodes)

@ Example: suppose we are minimizing and the incumbent value is 5

LP relaxation value

» Branching on x; prunes off the child sub-trees
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Quality of a Branch

Measuring the quality of a branch:

@ Change in objective value: AJ-_ =% -7 and Aj“ = 2j.+ —Z

@ Quality of the branch:
score(A Af) =4 Ajr

@ Higher score is better
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Two Classes of Branching Strategies

e Strong Branching (SB)
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e Strong Branching (SB)
» For some of the fractional integer variables at a node, simulate their
branching quality by solving LPs, branch on var. with best product
score

e Pseudocost Branching (PC)
» Maintain some historical averages of the increase in obj. value, one for
each of upwards and downwards branchings; combine by product.
» Imitate SB without solving many LP sub-problems.
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Contribution

e This talk: can we get the best of both worlds (SB and PC)?

» small number of nodes
» small time
> as little manual tuning as possible
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Contribution

e This talk: can we get the best of both worlds (SB and PC)?

» small number of nodes
» small time
> as little manual tuning as possible

Proposed Method

A Machine Learning (ML) framework for branching that imitates SB well,
at a fraction of the computation cost
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Learning of Branching Strategies

@ Regression:

» Tempted to set up learning task as fitting a regression model to
estimate SB scores directly
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Learning of Branching Strategies

@ Regression:
» Tempted to set up learning task as fitting a regression model to
estimate SB scores directly
@ Key observation:
» SB scores are only used to select the single best variable
@ Goal: learn to imitate the correct ranking of the candidate variables
at each node
» Collect training data on SB ranking & fit a ranking model
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Learning of Branching Strategies

MIP instance —. data model ML-based
Parameters —|| collection learning branching

until termination

Nodes
@ On-the-fly: no upfront offline learning required

o Instance-specific: different ML model for each instance

@ No lost work: data collection is part of the search tree
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On-the-fly Learning of Branching Strategies

MIP instance —. data model ML-based
Parameters —|| collection learning branching

W

until termination

Nodes

data collection: run SB for 6 nodes, and use SB scores as /abels for
variables within each node; compute features describing each variable
(dataset D)
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On-the-fly Learning of Branching Strategies

MIP instance —. data model ML-based
Parameters —|| collection learning branching

until termination

Nodes

data collection: run SB for 6 nodes, and use SB scores as /abels for
variables within each node; compute features describing each variable
(dataset D)

model learning: learn a model (function f) that ranks variables in D s.t.
good ones are ranked better than bad ones

ML-based branching: as of the (6 + 1)** node, use learned function f to
rank variables based on their features
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Data Collection

For the first 6 nodes, N; € N' = {Ny, ..., Ny}, run SB on some fractional
integer variables C;, |C;| < k, and collect dataset D formed of:
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Data Collection

For the first 6 nodes, N; € N' = {Ny, ..., Ny}, run SB on some fractional
integer variables C;, |C;| < k, and collect dataset D formed of:
— features describing each candidate variable at that node

— labels yj’ based on SB scores, s.t. higher is better
Example dataset: 6§ = 2,k = 4, p = 4 features

‘ yj’ feature 1 feature 2 feature 3 feature 4

x| 0 0.4 0.4 0.3 0.9

N xg | 1 0.3 0.9 0.4 0.9
%0 0.2 0.2 0.6 0.7
xe | 1 0.5 0.8 0.4 0.4

x1 |1 0.2 0.2 0.6 0.9

No x| 0 0.5 0.2 0.8 0.7
xs | O 0.4 0.9 0.1 0.4
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Features

o Feature map ¢ : X x N' — [0, 1]P, where X = {x1, ..., X}
#(xj, N;) describes variable x; at node N; with p features.
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Features

Feature map ¢ : X x N' — [0, 1]P, where X = {x1, ..., X}
#(xj, N;) describes variable x; at node N; with p features.
o Atomic features:
» static & dynamic, taking into account the structure of the node
subproblem
> easy to compute, with time complexity O(nnz(A))
o Interaction features:
» create new features by multiplying each pair of atomic features.

Scale and normalize all features, per node, to [0, 1].
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Features

We currently use 72 atomic features.
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Feature Count Reference

Static Features (18)
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Statistics for constraint coefficients 10
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Features

We currently use 72 atomic features.
Feature Count Reference

Static Features (18)

Objective function coefficients 3
Number of constraints 1
Statistics for constraint degrees 4
Statistics for constraint coefficients 10

Dynamic Features (54)

Slack and ceil distances

Pseudocosts [Achterberg, 2009]

Infeasibility statistics

Statistics for constraint degrees

Min/max for ratios of constraint coefficients to RHS [Alvarez et al., 2014]

[Alvarez et al., 2014]

| |IN|B|jOTN

Min/max for one-to-all coefficient ratios

Stats. for active constraint coefficients 24 [Patel and Chinneck, 2007]
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Labels

How do we obtain the /abels yf? Some alternatives:
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Labels

How do we obtain the /abels yJ’7 Some alternatives:

@ The SB scores themselves:
» Valid, but sensitive to variables with low SB scores (noisy)

@ A label 1 to the variable with max. SB score, and a label 0 otherwise:

» Too strict, ignores the fact that there may be multiple “good” variables
that deserve a label of 1.

o Relaxed Binary Labels:

L if SB score of x; is within o of max. SB score at N;
Yj 0, otherwise

where a € (0,1) is small.
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Model Learning

Goal

Learn a function of the features that ranks variables with better labels
higher than other variables.
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Goal

Learn a function of the features that ranks variables with better labels
higher than other variables.

@ “Learning to rank with pairwise loss”, popular in web
search [Joachims, 2002]

@ Assume the ranking function is linear in the features, i.e. f : RP — R,
and w € RP:

F (605, M) = w7 60 W)
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Model Learning

Goal

Learn a function of the features that ranks variables with better labels
higher than other variables.

@ “Learning to rank with pairwise loss”, popular in web
search [Joachims, 2002]

@ Assume the ranking function is linear in the features, i.e. f : RP — R,
and w € RP:

F (605, M) = w7 60 W)

@ Convex SVM optimization problem; can be solved efficiently with
cutting plane algorithm of [Joachims, 2006].
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Model Learning

Goal

Learn a function of the features that ranks variables with better labels
higher than other variables.

@ “Learning to rank with pairwise loss”, popular in web
search [Joachims, 2002]

@ Assume the ranking function is linear in the features, i.e. f : RP — R,
and w € RP:

F (605, M) = w7 60 W)

@ Convex SVM optimization problem; can be solved efficiently with
cutting plane algorithm of [Joachims, 2006].

@ Open-source implementation SVMrank.
http://www.cs.cornell.edu/people/tj/svm_light/svm_rank.html
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ML-based Branching

o After collecting data for the first 6 nodes, and learning the ranking
model, we start branching based on the learned model.

@ No SB anymore.
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ML-based Branching

o After collecting data for the first 6 nodes, and learning the ranking
model, we start branching based on the learned model.

@ No SB anymore.

e Complexity (per node):

» O(nnz(A)) for feature computation (line 2)
» O(p - k) for scoring by dot product (line 3)

g A W N =

Elias Khalil (Georgia Tech)

Algorithm: ML-based Branching

Input: node Nj;, candidate set C;, |Ci| < &
Output: variable xx s.t. k € C;
for each j € C; do
Compute the features by ¢(x;, N;)
Compute the score s; = f(¢(x;, Ni))
end
Branch on xi, where s, = maxjec;{sj}
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Experimental Setup

All algorithms implemented using control callbacks in CPLEX 12.6.1
Cuts applied at the root, disabled afterwards

Number of simplex iterations for any SB call is 50

MIPLIB2010 “Benchmark” set with a time cutoff of 5 hours; default
gap tolerances

°
°
@ Optimal value provided as upper cutoff
°
°
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Experimental Setup

o Competing Strategies:
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Experimental Setup

o Competing Strategies:
» SB+ML (6 =500,k = 10): our method with « = 0.2 and SVM
parameter C = 0.1. Results are consistent for other values of o and C.
» PC: pseudocost branching with SB initialization
» SB+PC (0 =500, x = 10): SB for first 6 nodes, PC after
@ Other Strategies:

» CPLEX-D: enter branching callback and branch as CPLEX suggests
» SB (k = 10): SB at each node

e MIPLIB2010 “Benchmark” set; 84 feasible instances, each with 10
random seeds. From the 840 instances, 523 remain after filtering (too
easy, too hard, etc.)

@ Similar experimental procedures used
in [Fischetti and Monaci, 2012, Kiling-Karzan et al., 2009].
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Results

‘ CPLEX-D SB PC SB+PC SB+ML

All (523) 11 129 66 63 52

Unsolved Instances EaSy, (255) 0 12 15 14 13
Medium (120) 2 43 22 22 17

Hard (148) 9 74 29 27 22

@ An instance is “Easy” if CPLEX-D solves in < 50,000 nodes,
“Medium” in < 500,000 nodes, “Hard” otherwise

e PC, SB4+PC and SB+ML are competing, lower is better for all three
criteria, and best is in bold
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Hard (148) 9 74 29 27 22
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Easy (255) 3,255 3,610 7,931 5,224 5,124
Num. nodes .
Medium (120) 173,417 121,923 395,199 288,916 234,093
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Results

‘ CPLEX-D SB PC SB+PC SB+ML
All (523) 11 129 66 63 52
Unsolved Instances EaSy, (255) 0 12 15 14 13
Medium (120) 2 43 22 22 17
Hard (148) 9 74 29 27 22
All (523) 46,633 33,072 92,662 70,455 59,223
Easy (255) 3,255 3,610 7,931 5,224 5,124
Num. nodes .
Medium (120) 173,417 121,923 395,199 288,916 234,093
Hard (148) 1,570,891 519,878 | 1,971,333 1,979,660 1,314,263
All (523) 499 2,263 960 1,003 1,059
. Easy (255) 111 602 243 361 382
Total time .
Medium (120) 1,123 6,169 2,493 1,892 1,776
Hard (148) 3,421 9,803 4,705 4,718 4,039

@ An instance is “Easy” if CPLEX-D solves in < 50,000 nodes,
“Medium” in < 500,000 nodes, “Hard” otherwise

e PC, SB4+PC and SB+ML are competing, lower is better for all three
criteria, and best is in bold
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Head-to-head Comparisons: Win/Tie/Loss

‘ CPLEX-D SB PC SB+PC
CPLEX-D
SB | 5/264/0/125/123
PC  8/164/0/285/63 68/63/0/326/5
SB+PC | 8/227/0/225/60 72/66/7/315/6 15/320/0/125/12
SB+ML  8/267/0/196/49 82/96/7/286/5 21/355/0/95/7  17/300/58,/96/6

Table: Each cell has the numbers of: Abs. Win/Win/Tie/Loss/Abs. Loss

Compare branching strategy A to B:
@ absolute win for A vs. B on instance Z < A solves Z, B does not

@ win for Avs. BonZ < A and B solve Z, and A does so in fewer
nodes than B

o tie between A and BonZ < A and B solve Z in same num. of nodes
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Future Directions

o Adaptive learning w.r.t. the evolution of the search
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Future Directions

o Adaptive learning w.r.t. the evolution of the search

o Fully online or offline learning
@ Most decisions in the MIP solver are inherently heuristic
» Can we use data and ML to make better informed decisions?

Figure: Cut Selection Strategy in SCIP (slide from [Wolter, 2006])

Cut Selection Strategy

=~ Efficacy, i.e., distance of the hyperplane to the LP sol -
> Orthogonality with respect to the other cuts
> Parallelism with respect to the objective function

= - ]

> Select cuts with largest value of

Weights of the criteria can be adjusted

&> ORTHOFAC = 1.0

&> OBJPARALFAC = 0.0001
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The End

Thanks!
Questions?

Elias Khalil
elias.khalil@cc.gatech.edu
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Features Description

Feature

Description

Count Reference

Static Features (18)

Objective function coeffs. Value of the coefficient (raw, positive only, negative only) 3
Num. i Number of constraints that the variable participates in (with a non-zero coefficient) 1
The degree of a constraint is the number of variables that participate in it. A variable may participate in
Stats. for constraint degrees multiple constraints, and statistics over those constraints’ degrees are used. The constraint degree is 4
computed on the root LP (mean, stdev., min, max)
. N A variable’s positive (negative) coefficients in the constraints it participates in (count, mean, stdev., min,
Stats. for constraint coeffs. P (neg ) P P ( 10
max)
Dynamic Features (54)
Slack and ceil distances 3], [#5] — @)} and [#7] — &} 2
Upwards and downwards values, and their corresponding ratio, sum and product, weighted by the (Achterberg
Pseudocosts N N 5
of z; 2009)
Infeasibility statistics Number and fr: lio.n of nodes for which applying SB to variable z; led to one (two) infeasible children 4
(during data collection)
N . A dynamic variant of the static version above. Here, the constraint degrees are on the current node’s LP.
Stats. for constraint degrees . N . N L . > - 7
The ratios of the static mean, maximum and to their dynamic counterparts are also features
Min/max for ratios of (Alvarez,
. N Minimum and maximum ratios across positive and negative right-hand-sides (RHS) 4 Louveaux, and
constraint coeffs. to RHS
Wehenkel 2014)
. The statistics are over the ratios of a variable’s coefficient, to the sum over all other variables’ coefficients, (Alvarez,
Min/max for one-to-all N . . 3 . . N
. . for a given constraint. Four versions of these ratios are considered: positive (negative) coefficient to sum of 8 Louveaux, and
coefficient ratios . N N
positive (negative) coefficients Wehenkel 2014)
An active constraint at a node LP is one which is binding with equality at the optimum. We consider 4
weighting schemes for an active constraint: unit weight, inverse of the sum of the coefficients of all
Stats. for active constraint variables in constraint, inverse of the sum of the coefficients of only candidate variables in constraint, dual 24 (Patel and
coefficients cost of the constraint. Given the absolute value of the coefficients of x; in the active constraints, we Chinneck 2007)

compute the sum, mean, stdev., max. and min. of those values, for each of the weighting schemes. We also
compute the weighted number of active constraints that x; is in, with the same 4 weightings




Performance Profiles

Performance profile for Nodes
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Head-to-head Comparisons: Node Ratios

CPLEX-D

SB

PC

SB+PC

SB+ML

CPLEX-D
SB

PC
SB+PC
SB+ML

0.72 (389)
1.56 (449)
1.20 (452)
1.03 (463)

1.39 (389)

2.11 (389)
1.63 (388)
1.32 (389)

0.64 (449)
0.47 (389)

0.75 (445)
0.63 (450)

0.84 (452)
0.61 (388)
1.34 (445)

0.82 (454)

0.97 (463
0.76 (389
1.59 (450

)
)
)
1.22 (454)




Head-to-head Comparisons: Win/Tie/Loss (averaging over

seeds)

CPLEX-D SB PC SB+PC
CPLEX-D
sB | 45/0/20
PC | 20/0/45 5/0/60
sB+pC | 28/0/37 8/0/57 51/0/14
SB+ML | 33/0/32 10/0/55 55/0/10 46/6/13

Table: Win-tie-loss counts for every pair of strategies, for the number of nodes. A
triplet in a cell in row A and column B expresses the number of wins for A over
B, the number of ties, and the number of losses of A to B, respectively, w.r.t. to
the shifted geometric mean of the number of nodes. A wins over 3 on instance 7
iff the mean number of nodes of A over the random seeds on Z is strictly less
than that of B; losses and ties are defined analogously.



Analysis of Feature Ranking Models

@ Compare ranking models across instances

@ For each model, consider the ranking of the features by their absolute
weight in the linear model

@ Similarity of two models measured by Spearman’s rank correlation
coefficient between their respective feature weight rankings

-0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Spearman'’s Rank Correlation Coefficient



Analysis of Feature Ranking Models

@ The 10 features that appear the most in the top K = 10 features over
models, sorted by that count (corresponding column is bold in the
header). The counts for other values of K are also shown. There are
2700 features in total. Static features are marked by (S); unmarked
features are dynamic.

Feature 1 3 5 10 20 100
PC Product 1 10 17 23 30 37
PC Product x PC Product 6 10 11 17 24 38
PC Product x Mean Constraint Degree 1 2 5 13 19 33
PC Product x Max. Constraint Degree 00 3 13 19 34
PC Product x Min. Constraint Degree 0 3 6 13 21 34
PC Product x Max. Absolute Coefficient in Active Constraints 2 7 8 13 27 37
PC Product x Mean Absolute Coefficient in Active Constraints 2 4 4 10 25 35
PC Product x Num. Constraints (S) 03 5 9 17 28
PC Product x Min. Positive Constraint Coefficient (S) 11 2 9 18 32
PC Product x Max. Ratio of Constraint Degree (static/dynamic) 0 3 4 9 16 34




Results with cuts and heuristics, no upper cutoff

e “Easy” if CPLEX solves in < 50,000 nodes, “Medium” in < 500,000
nodes, “Hard” otherwise

e PC, SB+PC and SB+ML are competing, lower is better for all three
criteria, and best is in bold

‘ CPLEX-D SB ‘ PC SB+PC SB+ML
All (538) 28 139 55 59 54
Inst ved Easy (318) 3 23 21 22 20
nstances unsolve
Medium (140) 18 74 24 26 27
Hard (80) 7 42 10 11 7
All (538) 25,407 17,909 43,120 36,235 32,948
Easy (318) 3,643 3,794 7,371 5,386 5,358
Num. nodes .
Medium (140) 165,188 91,279 260,851 266,497 217,306
Hard (80) 2,144,179 491,557 | 2,062,439 2,142,617 1,649,930
All (538) 681 2,273 1,027 1,229 1,423
. Easy (318) 203 821 385 498 630
Total time .
Medium (140) 2,978 9,942 3,767 4,077 4,210
Hard (80) 6,223 9,815 5,192 5,461 5,423




Head-to-head Comparisons: Win/Tie/Loss

CPLEX-D SB PC SB+PC
CPLEX-D
sB | 5/259/0/135/116
PC | 20/183/0/280/47  98/60/0/325/14
SB+PC | 21/216/0/242/52  94/96/1/288/14  22/264/0/193/26
SB+ML | 22/231/0/231/48 98/108/1/277/13 23/313/0/148/22 24/260,/55/145/19
Definitions:

@ absolute win for A v/s B on instance Z < A solves Z, B does not

e win for Av/s BonZ < A and B solve Z, and A does so in < nodes
than B

@ tie between A and Bon Z < A and B solve Z in same num. of nodes



Head-to-head Comparisons: Node Ratios

CPLEX-D SB PC SB+PC SB+ML

CPLEX-D 1.38 (394) 0.64 (463) 0.79 (458) 0.84 (462)

sB | 0.72 (394) 0.48 (385) 0.65 (385) 0.67 (386)
)
)

pC | 1.56 (463) 2.09 (385) 1.24 (457) 1.32 (461
SB+PC | 1.27 (458) 1.55 (385) 0.81 (457) 1.08 (460
SB+ML | 1.20 (462) 1.49 (386) 0.76 (461) 0.92 (460)

Table: Ratios for the shifted geometric means (shift 10) over nodes on instances
solved by both strategies. The first value in a cell in row A and column B is the
ratio of the average number of nodes used by A to that of B. The second value is
the number of instances solved by both A and B.
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Pseudocost Branching (PC)

@ Goal: Imitate SB without many simplex iterations.

@ Record change in objective value over time, and use historical
averages as proxy for SB scores.

@ Objective increase per unit change in x; at N; when branching down:

G, .= Aij
1 —
6.
: - _ i |y
with 6 = X; LXJJ
@ Take average over those events :
20
J # times branched down on Xx;

@ PC score at some node:
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Related Work

o [Achterberg and Berthold, 2009],[Hendel, 2015]: recent PC-based
strategies

e [Kiling-Karzan, Savelsbergh and Nemhauser, 2009]: collect
information on which variables are likely to lead to fathomed child
nodes quickly, then restart solve and branch on those

o [He et al., 2014]: ML (classification) for node selection; offline, can
prune optimum

o [Alvarez et al., 2014]: ML (regression) for variable selection; offline,
slow and modest results
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