
Learning to Branch in

Mixed Integer Programming

Elias Khalil

School of Computational Science & Engineering
Georgia Institute of Technology

AAAI 2016

Joint work with Pierre Le Bodic, Le Song,
George Nemhauser and Bistra Dilkina

Elias Khalil (Georgia Tech) Learning to Branch in MIP February 16, 2016 1 / 21

Overview

Goal: solve Mixed Integer Linear Programs (MIP) “faster”

Branch-and-Bound (B&B): a general framework for solving MIPs

B&B components: presolve, cutting planes, primal heuristics,
branching (this talk)

N0

N1 N2

Branch on which variable?
xj, xk, xm, etc.?

xi = 0 xi = 1

Figure: A B&B tree. A node is a sub-problem, an edge is an additional constraint

Elias Khalil (Georgia Tech) Learning to Branch in MIP February 16, 2016 2 / 21

Motivation

Branching on the “right” variables can have a dramatic impact on
size of B&B tree (i.e. number of nodes)

Example: suppose we are minimizing and the incumbent value is 5

ž=4

ž−j =6

xj 6 bx̌jc
ž+
j =7

xj > dx̌je
LP relaxation value

I Branching on xj prunes off the child sub-trees

Elias Khalil (Georgia Tech) Learning to Branch in MIP February 16, 2016 3 / 21

Motivation

Branching on the “right” variables can have a dramatic impact on
size of B&B tree (i.e. number of nodes)

Example: suppose we are minimizing and the incumbent value is 5

ž=4

ž−j =6

xj 6 bx̌jc
ž+
j =7

xj > dx̌je
LP relaxation value

I Branching on xj prunes off the child sub-trees

Elias Khalil (Georgia Tech) Learning to Branch in MIP February 16, 2016 3 / 21

Motivation

Branching on the “right” variables can have a dramatic impact on
size of B&B tree (i.e. number of nodes)

Example: suppose we are minimizing and the incumbent value is 5

ž=4

ž−j =6

xj 6 bx̌jc
ž+
j =7

xj > dx̌je
LP relaxation value

I Branching on xj prunes off the child sub-trees

Elias Khalil (Georgia Tech) Learning to Branch in MIP February 16, 2016 3 / 21

Quality of a Branch

Measuring the quality of a branch:

ž

ž−j

xj 6 bx̌jc
ž+
j

xj > dx̌je

Change in objective value: ∆−
j = ž−j − ž and ∆+

j = ž+
j − ž

Quality of the branch:

score(∆−
j ,∆

+
j) = ∆−

j ·∆+
j

Higher score is better

Elias Khalil (Georgia Tech) Learning to Branch in MIP February 16, 2016 4 / 21

Two Classes of Branching Strategies

Strong Branching (SB)

I For some of the fractional integer variables at a node, simulate their
branching quality by solving LPs, branch on var. with best product
score

Pseudocost Branching (PC)
I Maintain some historical averages of the increase in obj. value, one for

each of upwards and downwards branchings; combine by product.
I Imitate SB without solving many LP sub-problems.

time

n
o

d
es

PC

SB

Elias Khalil (Georgia Tech) Learning to Branch in MIP February 16, 2016 5 / 21

Two Classes of Branching Strategies

Strong Branching (SB)
I For some of the fractional integer variables at a node, simulate their

branching quality by solving LPs, branch on var. with best product
score

Pseudocost Branching (PC)
I Maintain some historical averages of the increase in obj. value, one for

each of upwards and downwards branchings; combine by product.
I Imitate SB without solving many LP sub-problems.

time

n
o

d
es

PC

SB

Elias Khalil (Georgia Tech) Learning to Branch in MIP February 16, 2016 5 / 21

Two Classes of Branching Strategies

Strong Branching (SB)
I For some of the fractional integer variables at a node, simulate their

branching quality by solving LPs, branch on var. with best product
score

Pseudocost Branching (PC)

I Maintain some historical averages of the increase in obj. value, one for
each of upwards and downwards branchings; combine by product.

I Imitate SB without solving many LP sub-problems.

time

n
o

d
es

PC

SB

Elias Khalil (Georgia Tech) Learning to Branch in MIP February 16, 2016 5 / 21

Two Classes of Branching Strategies

Strong Branching (SB)
I For some of the fractional integer variables at a node, simulate their

branching quality by solving LPs, branch on var. with best product
score

Pseudocost Branching (PC)
I Maintain some historical averages of the increase in obj. value, one for

each of upwards and downwards branchings; combine by product.

I Imitate SB without solving many LP sub-problems.

time

n
o

d
es

PC

SB

Elias Khalil (Georgia Tech) Learning to Branch in MIP February 16, 2016 5 / 21

Two Classes of Branching Strategies

Strong Branching (SB)
I For some of the fractional integer variables at a node, simulate their

branching quality by solving LPs, branch on var. with best product
score

Pseudocost Branching (PC)
I Maintain some historical averages of the increase in obj. value, one for

each of upwards and downwards branchings; combine by product.
I Imitate SB without solving many LP sub-problems.

time

n
o

d
es

PC

SB

Elias Khalil (Georgia Tech) Learning to Branch in MIP February 16, 2016 5 / 21

Two Classes of Branching Strategies

Strong Branching (SB)
I For some of the fractional integer variables at a node, simulate their

branching quality by solving LPs, branch on var. with best product
score

Pseudocost Branching (PC)
I Maintain some historical averages of the increase in obj. value, one for

each of upwards and downwards branchings; combine by product.
I Imitate SB without solving many LP sub-problems.

time

n
o

d
es

PC

SB

Elias Khalil (Georgia Tech) Learning to Branch in MIP February 16, 2016 5 / 21

Contribution

This talk: can we get the best of both worlds (SB and PC)?
I small number of nodes
I small time
I as little manual tuning as possible

Proposed Method

A Machine Learning (ML) framework for branching that imitates SB well,
at a fraction of the computation cost

Elias Khalil (Georgia Tech) Learning to Branch in MIP February 16, 2016 6 / 21

Contribution

This talk: can we get the best of both worlds (SB and PC)?
I small number of nodes
I small time
I as little manual tuning as possible

time

n
o

d
es

PC

SB?

Proposed Method

A Machine Learning (ML) framework for branching that imitates SB well,
at a fraction of the computation cost

Elias Khalil (Georgia Tech) Learning to Branch in MIP February 16, 2016 6 / 21

Contribution

This talk: can we get the best of both worlds (SB and PC)?
I small number of nodes
I small time
I as little manual tuning as possible

Proposed Method

A Machine Learning (ML) framework for branching that imitates SB well,
at a fraction of the computation cost

Elias Khalil (Georgia Tech) Learning to Branch in MIP February 16, 2016 6 / 21

Learning of Branching Strategies

Regression:
I Tempted to set up learning task as fitting a regression model to

estimate SB scores directly

Key observation:
I SB scores are only used to select the single best variable

Goal: learn to imitate the correct ranking of the candidate variables
at each node

I Collect training data on SB ranking & fit a ranking model

Elias Khalil (Georgia Tech) Learning to Branch in MIP February 16, 2016 7 / 21

Learning of Branching Strategies

Regression:
I Tempted to set up learning task as fitting a regression model to

estimate SB scores directly

Key observation:
I SB scores are only used to select the single best variable

Goal: learn to imitate the correct ranking of the candidate variables
at each node

I Collect training data on SB ranking & fit a ranking model

Elias Khalil (Georgia Tech) Learning to Branch in MIP February 16, 2016 7 / 21

Learning of Branching Strategies

Regression:
I Tempted to set up learning task as fitting a regression model to

estimate SB scores directly

Key observation:
I SB scores are only used to select the single best variable

Goal: learn to imitate the correct ranking of the candidate variables
at each node

I Collect training data on SB ranking & fit a ranking model

Elias Khalil (Georgia Tech) Learning to Branch in MIP February 16, 2016 7 / 21

Learning of Branching StrategiesOn-the-fly learning of branching strategies

data
collection

MIP instance

Parameters

model
learning

ML-based
branching

0 θ

Nodes
until termination

Parameters:

θ: maximum number of SB nodes

κ: maximum size of variable candidate set at each node

Khalil, Dilkina, Song (Georgia Tech) Learning to Branch in MIP ISMP, July 2015 13 / 28

On-the-fly: no upfront offline learning required

Instance-specific: different ML model for each instance

No lost work: data collection is part of the search tree

Elias Khalil (Georgia Tech) Learning to Branch in MIP February 16, 2016 8 / 21

On-the-fly Learning of Branching Strategies
On-the-fly learning of branching strategies

data
collection

MIP instance

Parameters

model
learning

ML-based
branching

0 θ

Nodes
until termination

Parameters:

θ: maximum number of SB nodes

κ: maximum size of variable candidate set at each node

Khalil, Dilkina, Song (Georgia Tech) Learning to Branch in MIP ISMP, July 2015 13 / 28

data collection: run SB for θ nodes, and use SB scores as labels for
variables within each node; compute features describing each variable
(dataset D)

model learning: learn a model (function f) that ranks variables in D s.t.
good ones are ranked better than bad ones
ML-based branching: as of the (θ + 1)st node, use learned function f to
rank variables based on their features

Elias Khalil (Georgia Tech) Learning to Branch in MIP February 16, 2016 9 / 21

On-the-fly Learning of Branching Strategies
On-the-fly learning of branching strategies

data
collection

MIP instance

Parameters

model
learning

ML-based
branching

0 θ

Nodes
until termination

Parameters:

θ: maximum number of SB nodes

κ: maximum size of variable candidate set at each node

Khalil, Dilkina, Song (Georgia Tech) Learning to Branch in MIP ISMP, July 2015 13 / 28

data collection: run SB for θ nodes, and use SB scores as labels for
variables within each node; compute features describing each variable
(dataset D)
model learning: learn a model (function f) that ranks variables in D s.t.
good ones are ranked better than bad ones

ML-based branching: as of the (θ + 1)st node, use learned function f to
rank variables based on their features

Elias Khalil (Georgia Tech) Learning to Branch in MIP February 16, 2016 9 / 21

On-the-fly Learning of Branching Strategies
On-the-fly learning of branching strategies

data
collection

MIP instance

Parameters

model
learning

ML-based
branching

0 θ

Nodes
until termination

Parameters:

θ: maximum number of SB nodes

κ: maximum size of variable candidate set at each node

Khalil, Dilkina, Song (Georgia Tech) Learning to Branch in MIP ISMP, July 2015 13 / 28

data collection: run SB for θ nodes, and use SB scores as labels for
variables within each node; compute features describing each variable
(dataset D)
model learning: learn a model (function f) that ranks variables in D s.t.
good ones are ranked better than bad ones
ML-based branching: as of the (θ + 1)st node, use learned function f to
rank variables based on their features

Elias Khalil (Georgia Tech) Learning to Branch in MIP February 16, 2016 9 / 21

Data Collection

For the first θ nodes, Ni ∈ N = {N1, ...,Nθ}, run SB on some fractional
integer variables Ci , |Ci | 6 κ, and collect dataset D formed of:

– features describing each candidate variable at that node
– labels y ij , based on SB scores, s.t. higher is better

Example dataset: θ = 2, κ = 4, p = 4 features

y ij feature 1 feature 2 feature 3 feature 4

N1

x2 0 0.4 0.4 0.3 0.9

x4 1 0.3 0.9 0.4 0.9

x5 0 0.2 0.2 0.6 0.7

x6 1 0.5 0.8 0.4 0.4

N2

x1 1 0.2 0.2 0.6 0.9

x2 0 0.5 0.2 0.8 0.7

x4 0 0.4 0.9 0.1 0.4

Elias Khalil (Georgia Tech) Learning to Branch in MIP February 16, 2016 10 / 21

Data Collection

For the first θ nodes, Ni ∈ N = {N1, ...,Nθ}, run SB on some fractional
integer variables Ci , |Ci | 6 κ, and collect dataset D formed of:

– features describing each candidate variable at that node

– labels y ij , based on SB scores, s.t. higher is better

Example dataset: θ = 2, κ = 4, p = 4 features

y ij feature 1 feature 2 feature 3 feature 4

N1

x2 0 0.4 0.4 0.3 0.9

x4 1 0.3 0.9 0.4 0.9

x5 0 0.2 0.2 0.6 0.7

x6 1 0.5 0.8 0.4 0.4

N2

x1 1 0.2 0.2 0.6 0.9

x2 0 0.5 0.2 0.8 0.7

x4 0 0.4 0.9 0.1 0.4

Elias Khalil (Georgia Tech) Learning to Branch in MIP February 16, 2016 10 / 21

Data Collection

For the first θ nodes, Ni ∈ N = {N1, ...,Nθ}, run SB on some fractional
integer variables Ci , |Ci | 6 κ, and collect dataset D formed of:

– features describing each candidate variable at that node
– labels y ij , based on SB scores, s.t. higher is better

Example dataset: θ = 2, κ = 4, p = 4 features

y ij feature 1 feature 2 feature 3 feature 4

N1

x2 0 0.4 0.4 0.3 0.9

x4 1 0.3 0.9 0.4 0.9

x5 0 0.2 0.2 0.6 0.7

x6 1 0.5 0.8 0.4 0.4

N2

x1 1 0.2 0.2 0.6 0.9

x2 0 0.5 0.2 0.8 0.7

x4 0 0.4 0.9 0.1 0.4

Elias Khalil (Georgia Tech) Learning to Branch in MIP February 16, 2016 10 / 21

Data Collection

For the first θ nodes, Ni ∈ N = {N1, ...,Nθ}, run SB on some fractional
integer variables Ci , |Ci | 6 κ, and collect dataset D formed of:

– features describing each candidate variable at that node
– labels y ij , based on SB scores, s.t. higher is better

Example dataset: θ = 2, κ = 4, p = 4 features

y ij feature 1 feature 2 feature 3 feature 4

N1

x2 0 0.4 0.4 0.3 0.9

x4 1 0.3 0.9 0.4 0.9

x5 0 0.2 0.2 0.6 0.7

x6 1 0.5 0.8 0.4 0.4

N2

x1 1 0.2 0.2 0.6 0.9

x2 0 0.5 0.2 0.8 0.7

x4 0 0.4 0.9 0.1 0.4

Elias Khalil (Georgia Tech) Learning to Branch in MIP February 16, 2016 10 / 21

Features

Feature map φ : X ×N → [0, 1]p, where X = {x1, ..., xn}.
φ(xj ,Ni) describes variable xj at node Ni with p features.

Atomic features:
I static & dynamic, taking into account the structure of the node

subproblem
I easy to compute, with time complexity O

(
nnz(A)

)
Interaction features:

I create new features by multiplying each pair of atomic features.

Scale and normalize all features, per node, to [0, 1].

Elias Khalil (Georgia Tech) Learning to Branch in MIP February 16, 2016 11 / 21

Features

Feature map φ : X ×N → [0, 1]p, where X = {x1, ..., xn}.
φ(xj ,Ni) describes variable xj at node Ni with p features.

Atomic features:

I static & dynamic, taking into account the structure of the node
subproblem

I easy to compute, with time complexity O
(
nnz(A)

)
Interaction features:

I create new features by multiplying each pair of atomic features.

Scale and normalize all features, per node, to [0, 1].

Elias Khalil (Georgia Tech) Learning to Branch in MIP February 16, 2016 11 / 21

Features

Feature map φ : X ×N → [0, 1]p, where X = {x1, ..., xn}.
φ(xj ,Ni) describes variable xj at node Ni with p features.

Atomic features:
I static & dynamic, taking into account the structure of the node

subproblem

I easy to compute, with time complexity O
(
nnz(A)

)
Interaction features:

I create new features by multiplying each pair of atomic features.

Scale and normalize all features, per node, to [0, 1].

Elias Khalil (Georgia Tech) Learning to Branch in MIP February 16, 2016 11 / 21

Features

Feature map φ : X ×N → [0, 1]p, where X = {x1, ..., xn}.
φ(xj ,Ni) describes variable xj at node Ni with p features.

Atomic features:
I static & dynamic, taking into account the structure of the node

subproblem
I easy to compute, with time complexity O

(
nnz(A)

)

Interaction features:
I create new features by multiplying each pair of atomic features.

Scale and normalize all features, per node, to [0, 1].

Elias Khalil (Georgia Tech) Learning to Branch in MIP February 16, 2016 11 / 21

Features

Feature map φ : X ×N → [0, 1]p, where X = {x1, ..., xn}.
φ(xj ,Ni) describes variable xj at node Ni with p features.

Atomic features:
I static & dynamic, taking into account the structure of the node

subproblem
I easy to compute, with time complexity O

(
nnz(A)

)
Interaction features:

I create new features by multiplying each pair of atomic features.

Scale and normalize all features, per node, to [0, 1].

Elias Khalil (Georgia Tech) Learning to Branch in MIP February 16, 2016 11 / 21

Features

Feature map φ : X ×N → [0, 1]p, where X = {x1, ..., xn}.
φ(xj ,Ni) describes variable xj at node Ni with p features.

Atomic features:
I static & dynamic, taking into account the structure of the node

subproblem
I easy to compute, with time complexity O

(
nnz(A)

)
Interaction features:

I create new features by multiplying each pair of atomic features.

Scale and normalize all features, per node, to [0, 1].

Elias Khalil (Georgia Tech) Learning to Branch in MIP February 16, 2016 11 / 21

Features

Feature map φ : X ×N → [0, 1]p, where X = {x1, ..., xn}.
φ(xj ,Ni) describes variable xj at node Ni with p features.

Atomic features:
I static & dynamic, taking into account the structure of the node

subproblem
I easy to compute, with time complexity O

(
nnz(A)

)
Interaction features:

I create new features by multiplying each pair of atomic features.

Scale and normalize all features, per node, to [0, 1].

Elias Khalil (Georgia Tech) Learning to Branch in MIP February 16, 2016 11 / 21

Features

We currently use 72 atomic features.

Feature Count Reference

Static Features (18)

Objective function coefficients 3

Number of constraints 1

Statistics for constraint degrees 4

Statistics for constraint coefficients 10

Dynamic Features (54)

Slack and ceil distances 2

Pseudocosts 5 [Achterberg, 2009]

Infeasibility statistics 4

Statistics for constraint degrees 7

Min/max for ratios of constraint coefficients to RHS 4 [Alvarez et al., 2014]

Min/max for one-to-all coefficient ratios 8 [Alvarez et al., 2014]

Stats. for active constraint coefficients 24
[Patel and Chinneck, 2007]

Elias Khalil (Georgia Tech) Learning to Branch in MIP February 16, 2016 12 / 21

Features

We currently use 72 atomic features.

Feature Count Reference

Static Features (18)

Objective function coefficients 3

Number of constraints 1

Statistics for constraint degrees 4

Statistics for constraint coefficients 10

Dynamic Features (54)

Slack and ceil distances 2

Pseudocosts 5 [Achterberg, 2009]

Infeasibility statistics 4

Statistics for constraint degrees 7

Min/max for ratios of constraint coefficients to RHS 4 [Alvarez et al., 2014]

Min/max for one-to-all coefficient ratios 8 [Alvarez et al., 2014]

Stats. for active constraint coefficients 24
[Patel and Chinneck, 2007]

Elias Khalil (Georgia Tech) Learning to Branch in MIP February 16, 2016 12 / 21

Features

We currently use 72 atomic features.

Feature Count Reference

Static Features (18)

Objective function coefficients 3

Number of constraints 1

Statistics for constraint degrees 4

Statistics for constraint coefficients 10

Dynamic Features (54)

Slack and ceil distances 2

Pseudocosts 5 [Achterberg, 2009]

Infeasibility statistics 4

Statistics for constraint degrees 7

Min/max for ratios of constraint coefficients to RHS 4 [Alvarez et al., 2014]

Min/max for one-to-all coefficient ratios 8 [Alvarez et al., 2014]

Stats. for active constraint coefficients 24
[Patel and Chinneck, 2007]

Elias Khalil (Georgia Tech) Learning to Branch in MIP February 16, 2016 12 / 21

Labels

How do we obtain the labels y ij ? Some alternatives:

The SB scores themselves:
I Valid, but sensitive to variables with low SB scores (noisy)

A label 1 to the variable with max. SB score, and a label 0 otherwise:

I Too strict, ignores the fact that there may be multiple “good” variables
that deserve a label of 1.

Relaxed Binary Labels:

y ij =

{
1, if SB score of xj is within α of max. SB score at Ni

0, otherwise

where α ∈ (0, 1) is small.

Elias Khalil (Georgia Tech) Learning to Branch in MIP February 16, 2016 13 / 21

Labels

How do we obtain the labels y ij ? Some alternatives:

The SB scores themselves:

I Valid, but sensitive to variables with low SB scores (noisy)

A label 1 to the variable with max. SB score, and a label 0 otherwise:

I Too strict, ignores the fact that there may be multiple “good” variables
that deserve a label of 1.

Relaxed Binary Labels:

y ij =

{
1, if SB score of xj is within α of max. SB score at Ni

0, otherwise

where α ∈ (0, 1) is small.

Elias Khalil (Georgia Tech) Learning to Branch in MIP February 16, 2016 13 / 21

Labels

How do we obtain the labels y ij ? Some alternatives:

The SB scores themselves:
I Valid, but sensitive to variables with low SB scores (noisy)

A label 1 to the variable with max. SB score, and a label 0 otherwise:

I Too strict, ignores the fact that there may be multiple “good” variables
that deserve a label of 1.

Relaxed Binary Labels:

y ij =

{
1, if SB score of xj is within α of max. SB score at Ni

0, otherwise

where α ∈ (0, 1) is small.

Elias Khalil (Georgia Tech) Learning to Branch in MIP February 16, 2016 13 / 21

Labels

How do we obtain the labels y ij ? Some alternatives:

The SB scores themselves:
I Valid, but sensitive to variables with low SB scores (noisy)

A label 1 to the variable with max. SB score, and a label 0 otherwise:

I Too strict, ignores the fact that there may be multiple “good” variables
that deserve a label of 1.

Relaxed Binary Labels:

y ij =

{
1, if SB score of xj is within α of max. SB score at Ni

0, otherwise

where α ∈ (0, 1) is small.

Elias Khalil (Georgia Tech) Learning to Branch in MIP February 16, 2016 13 / 21

Labels

How do we obtain the labels y ij ? Some alternatives:

The SB scores themselves:
I Valid, but sensitive to variables with low SB scores (noisy)

A label 1 to the variable with max. SB score, and a label 0 otherwise:

I Too strict, ignores the fact that there may be multiple “good” variables
that deserve a label of 1.

Relaxed Binary Labels:

y ij =

{
1, if SB score of xj is within α of max. SB score at Ni

0, otherwise

where α ∈ (0, 1) is small.

Elias Khalil (Georgia Tech) Learning to Branch in MIP February 16, 2016 13 / 21

Labels

How do we obtain the labels y ij ? Some alternatives:

The SB scores themselves:
I Valid, but sensitive to variables with low SB scores (noisy)

A label 1 to the variable with max. SB score, and a label 0 otherwise:

I Too strict, ignores the fact that there may be multiple “good” variables
that deserve a label of 1.

Relaxed Binary Labels:

y ij =

{
1, if SB score of xj is within α of max. SB score at Ni

0, otherwise

where α ∈ (0, 1) is small.

Elias Khalil (Georgia Tech) Learning to Branch in MIP February 16, 2016 13 / 21

Labels

How do we obtain the labels y ij ? Some alternatives:

The SB scores themselves:
I Valid, but sensitive to variables with low SB scores (noisy)

A label 1 to the variable with max. SB score, and a label 0 otherwise:

I Too strict, ignores the fact that there may be multiple “good” variables
that deserve a label of 1.

Relaxed Binary Labels:

y ij =

{
1, if SB score of xj is within α of max. SB score at Ni

0, otherwise

where α ∈ (0, 1) is small.

Elias Khalil (Georgia Tech) Learning to Branch in MIP February 16, 2016 13 / 21

Model Learning

Goal

Learn a function of the features that ranks variables with better labels
higher than other variables.

“Learning to rank with pairwise loss”, popular in web
search [Joachims, 2002]

Assume the ranking function is linear in the features, i.e. f : Rp → R,
and w ∈ Rp:

f
(
φ(xj ,Ni)

)
= wT · φ(xj ,Ni)

Convex SVM optimization problem; can be solved efficiently with
cutting plane algorithm of [Joachims, 2006].

Open-source implementation SVMrank :
http://www.cs.cornell.edu/people/tj/svm_light/svm_rank.html

Elias Khalil (Georgia Tech) Learning to Branch in MIP February 16, 2016 14 / 21

http://www.cs.cornell.edu/people/tj/svm_light/svm_rank.html

Model Learning

Goal

Learn a function of the features that ranks variables with better labels
higher than other variables.

“Learning to rank with pairwise loss”, popular in web
search [Joachims, 2002]

Assume the ranking function is linear in the features, i.e. f : Rp → R,
and w ∈ Rp:

f
(
φ(xj ,Ni)

)
= wT · φ(xj ,Ni)

Convex SVM optimization problem; can be solved efficiently with
cutting plane algorithm of [Joachims, 2006].

Open-source implementation SVMrank :
http://www.cs.cornell.edu/people/tj/svm_light/svm_rank.html

Elias Khalil (Georgia Tech) Learning to Branch in MIP February 16, 2016 14 / 21

http://www.cs.cornell.edu/people/tj/svm_light/svm_rank.html

Model Learning

Goal

Learn a function of the features that ranks variables with better labels
higher than other variables.

“Learning to rank with pairwise loss”, popular in web
search [Joachims, 2002]

Assume the ranking function is linear in the features, i.e. f : Rp → R,
and w ∈ Rp:

f
(
φ(xj ,Ni)

)
= wT · φ(xj ,Ni)

Convex SVM optimization problem; can be solved efficiently with
cutting plane algorithm of [Joachims, 2006].

Open-source implementation SVMrank :
http://www.cs.cornell.edu/people/tj/svm_light/svm_rank.html

Elias Khalil (Georgia Tech) Learning to Branch in MIP February 16, 2016 14 / 21

http://www.cs.cornell.edu/people/tj/svm_light/svm_rank.html

Model Learning

Goal

Learn a function of the features that ranks variables with better labels
higher than other variables.

“Learning to rank with pairwise loss”, popular in web
search [Joachims, 2002]

Assume the ranking function is linear in the features, i.e. f : Rp → R,
and w ∈ Rp:

f
(
φ(xj ,Ni)

)
= wT · φ(xj ,Ni)

Convex SVM optimization problem; can be solved efficiently with
cutting plane algorithm of [Joachims, 2006].

Open-source implementation SVMrank :
http://www.cs.cornell.edu/people/tj/svm_light/svm_rank.html

Elias Khalil (Georgia Tech) Learning to Branch in MIP February 16, 2016 14 / 21

http://www.cs.cornell.edu/people/tj/svm_light/svm_rank.html

Model Learning

Goal

Learn a function of the features that ranks variables with better labels
higher than other variables.

“Learning to rank with pairwise loss”, popular in web
search [Joachims, 2002]

Assume the ranking function is linear in the features, i.e. f : Rp → R,
and w ∈ Rp:

f
(
φ(xj ,Ni)

)
= wT · φ(xj ,Ni)

Convex SVM optimization problem; can be solved efficiently with
cutting plane algorithm of [Joachims, 2006].

Open-source implementation SVMrank :
http://www.cs.cornell.edu/people/tj/svm_light/svm_rank.html

Elias Khalil (Georgia Tech) Learning to Branch in MIP February 16, 2016 14 / 21

http://www.cs.cornell.edu/people/tj/svm_light/svm_rank.html

ML-based Branching

After collecting data for the first θ nodes, and learning the ranking
model, we start branching based on the learned model.

No SB anymore.

Complexity (per node):
I O

(
nnz(A)

)
for feature computation (line 2)

I O(p · κ) for scoring by dot product (line 3)

ML-based Branching

After collecting data for the first θ nodes, and learning the ranking
model, we start branching based on the learned model.

No SB anymore.

Complexity (per node):
I O(nnz(A)) for feature computation (step 2)
I O(p · κ) for scoring by dot product (step 3)

Algorithm: ML-based Branching
Input: node Ni , candidate set Ci , |Ci | 6 κ
Output: variable xk s.t. k ∈ Ci

1 for each j ∈ Ci do
2 Compute the features by φ(xj ,Ni)
3 Compute the score sj = f

(
φ(xj ,Ni)

)

4 end
5 Branch on xk ,where sk = maxj∈Ci {sj}

Elias Khalil (Georgia Tech) Learning to Branch in MIP Tuesday February 16, 2016 21 / 32

Elias Khalil (Georgia Tech) Learning to Branch in MIP February 16, 2016 15 / 21

ML-based Branching

After collecting data for the first θ nodes, and learning the ranking
model, we start branching based on the learned model.

No SB anymore.

Complexity (per node):
I O

(
nnz(A)

)
for feature computation (line 2)

I O(p · κ) for scoring by dot product (line 3)

ML-based Branching

After collecting data for the first θ nodes, and learning the ranking
model, we start branching based on the learned model.

No SB anymore.

Complexity (per node):
I O(nnz(A)) for feature computation (step 2)
I O(p · κ) for scoring by dot product (step 3)

Algorithm: ML-based Branching
Input: node Ni , candidate set Ci , |Ci | 6 κ
Output: variable xk s.t. k ∈ Ci

1 for each j ∈ Ci do
2 Compute the features by φ(xj ,Ni)
3 Compute the score sj = f

(
φ(xj ,Ni)

)

4 end
5 Branch on xk ,where sk = maxj∈Ci {sj}

Elias Khalil (Georgia Tech) Learning to Branch in MIP Tuesday February 16, 2016 21 / 32Elias Khalil (Georgia Tech) Learning to Branch in MIP February 16, 2016 15 / 21

Experimental Setup

All algorithms implemented using control callbacks in CPLEX 12.6.1

Cuts applied at the root, disabled afterwards

Optimal value provided as upper cutoff

Number of simplex iterations for any SB call is 50

MIPLIB2010 “Benchmark” set with a time cutoff of 5 hours; default
gap tolerances

Elias Khalil (Georgia Tech) Learning to Branch in MIP February 16, 2016 16 / 21

Experimental Setup

Competing Strategies:

I sb+ml (θ = 500, κ = 10): our method with α = 0.2 and SVM
parameter C = 0.1. Results are consistent for other values of α and C .

I pc: pseudocost branching with SB initialization
I sb+pc (θ = 500, κ = 10): SB for first θ nodes, PC after

Other Strategies:
I cplex-d: enter branching callback and branch as CPLEX suggests
I sb (κ = 10): SB at each node

MIPLIB2010 “Benchmark” set; 84 feasible instances, each with 10
random seeds. From the 840 instances, 523 remain after filtering (too
easy, too hard, etc.)

Similar experimental procedures used
in [Fischetti and Monaci, 2012, Kılınç-Karzan et al., 2009].

Elias Khalil (Georgia Tech) Learning to Branch in MIP February 16, 2016 17 / 21

Experimental Setup

Competing Strategies:
I sb+ml (θ = 500, κ = 10): our method with α = 0.2 and SVM

parameter C = 0.1. Results are consistent for other values of α and C .

I pc: pseudocost branching with SB initialization
I sb+pc (θ = 500, κ = 10): SB for first θ nodes, PC after

Other Strategies:
I cplex-d: enter branching callback and branch as CPLEX suggests
I sb (κ = 10): SB at each node

MIPLIB2010 “Benchmark” set; 84 feasible instances, each with 10
random seeds. From the 840 instances, 523 remain after filtering (too
easy, too hard, etc.)

Similar experimental procedures used
in [Fischetti and Monaci, 2012, Kılınç-Karzan et al., 2009].

Elias Khalil (Georgia Tech) Learning to Branch in MIP February 16, 2016 17 / 21

Experimental Setup

Competing Strategies:
I sb+ml (θ = 500, κ = 10): our method with α = 0.2 and SVM

parameter C = 0.1. Results are consistent for other values of α and C .
I pc: pseudocost branching with SB initialization

I sb+pc (θ = 500, κ = 10): SB for first θ nodes, PC after

Other Strategies:
I cplex-d: enter branching callback and branch as CPLEX suggests
I sb (κ = 10): SB at each node

MIPLIB2010 “Benchmark” set; 84 feasible instances, each with 10
random seeds. From the 840 instances, 523 remain after filtering (too
easy, too hard, etc.)

Similar experimental procedures used
in [Fischetti and Monaci, 2012, Kılınç-Karzan et al., 2009].

Elias Khalil (Georgia Tech) Learning to Branch in MIP February 16, 2016 17 / 21

Experimental Setup

Competing Strategies:
I sb+ml (θ = 500, κ = 10): our method with α = 0.2 and SVM

parameter C = 0.1. Results are consistent for other values of α and C .
I pc: pseudocost branching with SB initialization
I sb+pc (θ = 500, κ = 10): SB for first θ nodes, PC after

Other Strategies:
I cplex-d: enter branching callback and branch as CPLEX suggests
I sb (κ = 10): SB at each node

MIPLIB2010 “Benchmark” set; 84 feasible instances, each with 10
random seeds. From the 840 instances, 523 remain after filtering (too
easy, too hard, etc.)

Similar experimental procedures used
in [Fischetti and Monaci, 2012, Kılınç-Karzan et al., 2009].

Elias Khalil (Georgia Tech) Learning to Branch in MIP February 16, 2016 17 / 21

Experimental Setup

Competing Strategies:
I sb+ml (θ = 500, κ = 10): our method with α = 0.2 and SVM

parameter C = 0.1. Results are consistent for other values of α and C .
I pc: pseudocost branching with SB initialization
I sb+pc (θ = 500, κ = 10): SB for first θ nodes, PC after

Other Strategies:

I cplex-d: enter branching callback and branch as CPLEX suggests
I sb (κ = 10): SB at each node

MIPLIB2010 “Benchmark” set; 84 feasible instances, each with 10
random seeds. From the 840 instances, 523 remain after filtering (too
easy, too hard, etc.)

Similar experimental procedures used
in [Fischetti and Monaci, 2012, Kılınç-Karzan et al., 2009].

Elias Khalil (Georgia Tech) Learning to Branch in MIP February 16, 2016 17 / 21

Experimental Setup

Competing Strategies:
I sb+ml (θ = 500, κ = 10): our method with α = 0.2 and SVM

parameter C = 0.1. Results are consistent for other values of α and C .
I pc: pseudocost branching with SB initialization
I sb+pc (θ = 500, κ = 10): SB for first θ nodes, PC after

Other Strategies:
I cplex-d: enter branching callback and branch as CPLEX suggests

I sb (κ = 10): SB at each node

MIPLIB2010 “Benchmark” set; 84 feasible instances, each with 10
random seeds. From the 840 instances, 523 remain after filtering (too
easy, too hard, etc.)

Similar experimental procedures used
in [Fischetti and Monaci, 2012, Kılınç-Karzan et al., 2009].

Elias Khalil (Georgia Tech) Learning to Branch in MIP February 16, 2016 17 / 21

Experimental Setup

Competing Strategies:
I sb+ml (θ = 500, κ = 10): our method with α = 0.2 and SVM

parameter C = 0.1. Results are consistent for other values of α and C .
I pc: pseudocost branching with SB initialization
I sb+pc (θ = 500, κ = 10): SB for first θ nodes, PC after

Other Strategies:
I cplex-d: enter branching callback and branch as CPLEX suggests
I sb (κ = 10): SB at each node

MIPLIB2010 “Benchmark” set; 84 feasible instances, each with 10
random seeds. From the 840 instances, 523 remain after filtering (too
easy, too hard, etc.)

Similar experimental procedures used
in [Fischetti and Monaci, 2012, Kılınç-Karzan et al., 2009].

Elias Khalil (Georgia Tech) Learning to Branch in MIP February 16, 2016 17 / 21

Experimental Setup

Competing Strategies:
I sb+ml (θ = 500, κ = 10): our method with α = 0.2 and SVM

parameter C = 0.1. Results are consistent for other values of α and C .
I pc: pseudocost branching with SB initialization
I sb+pc (θ = 500, κ = 10): SB for first θ nodes, PC after

Other Strategies:
I cplex-d: enter branching callback and branch as CPLEX suggests
I sb (κ = 10): SB at each node

MIPLIB2010 “Benchmark” set; 84 feasible instances, each with 10
random seeds. From the 840 instances, 523 remain after filtering (too
easy, too hard, etc.)

Similar experimental procedures used
in [Fischetti and Monaci, 2012, Kılınç-Karzan et al., 2009].

Elias Khalil (Georgia Tech) Learning to Branch in MIP February 16, 2016 17 / 21

Experimental Setup

Competing Strategies:
I sb+ml (θ = 500, κ = 10): our method with α = 0.2 and SVM

parameter C = 0.1. Results are consistent for other values of α and C .
I pc: pseudocost branching with SB initialization
I sb+pc (θ = 500, κ = 10): SB for first θ nodes, PC after

Other Strategies:
I cplex-d: enter branching callback and branch as CPLEX suggests
I sb (κ = 10): SB at each node

MIPLIB2010 “Benchmark” set; 84 feasible instances, each with 10
random seeds. From the 840 instances, 523 remain after filtering (too
easy, too hard, etc.)

Similar experimental procedures used
in [Fischetti and Monaci, 2012, Kılınç-Karzan et al., 2009].

Elias Khalil (Georgia Tech) Learning to Branch in MIP February 16, 2016 17 / 21

Results

cplex-d sb pc sb+pc sb+ml

Unsolved Instances

All (523) 11 129 66 63 52

Easy (255) 0 12 15 14 13

Medium (120) 2 43 22 22 17

Hard (148) 9 74 29 27 22

Num. nodes

All (523) 46,633 33,072 92,662 70,455 59,223

Easy (255) 3,255 3,610 7,931 5,224 5,124

Medium (120) 173,417 121,923 395,199 288,916 234,093

Hard (148) 1,570,891 519,878 1,971,333 1,979,660 1,314,263

Total time

All (523) 499 2,263 960 1,093 1,059

Easy (255) 111 602 243 361 382

Medium (120) 1,123 6,169 2,493 1,892 1,776

Hard (148) 3,421 9,803 4,705 4,718 4,039

An instance is “Easy” if cplex-d solves in 6 50,000 nodes,
“Medium” in 6 500,000 nodes, “Hard” otherwise

PC, SB+PC and SB+ML are competing, lower is better for all three
criteria, and best is in bold

Elias Khalil (Georgia Tech) Learning to Branch in MIP February 16, 2016 18 / 21

Results

cplex-d sb pc sb+pc sb+ml

Unsolved Instances

All (523) 11 129 66 63 52

Easy (255) 0 12 15 14 13

Medium (120) 2 43 22 22 17

Hard (148) 9 74 29 27 22

Num. nodes

All (523) 46,633 33,072 92,662 70,455 59,223

Easy (255) 3,255 3,610 7,931 5,224 5,124

Medium (120) 173,417 121,923 395,199 288,916 234,093

Hard (148) 1,570,891 519,878 1,971,333 1,979,660 1,314,263

Total time

All (523) 499 2,263 960 1,093 1,059

Easy (255) 111 602 243 361 382

Medium (120) 1,123 6,169 2,493 1,892 1,776

Hard (148) 3,421 9,803 4,705 4,718 4,039

An instance is “Easy” if cplex-d solves in 6 50,000 nodes,
“Medium” in 6 500,000 nodes, “Hard” otherwise

PC, SB+PC and SB+ML are competing, lower is better for all three
criteria, and best is in bold

Elias Khalil (Georgia Tech) Learning to Branch in MIP February 16, 2016 18 / 21

Results

cplex-d sb pc sb+pc sb+ml

Unsolved Instances

All (523) 11 129 66 63 52

Easy (255) 0 12 15 14 13

Medium (120) 2 43 22 22 17

Hard (148) 9 74 29 27 22

Num. nodes

All (523) 46,633 33,072 92,662 70,455 59,223

Easy (255) 3,255 3,610 7,931 5,224 5,124

Medium (120) 173,417 121,923 395,199 288,916 234,093

Hard (148) 1,570,891 519,878 1,971,333 1,979,660 1,314,263

Total time

All (523) 499 2,263 960 1,093 1,059

Easy (255) 111 602 243 361 382

Medium (120) 1,123 6,169 2,493 1,892 1,776

Hard (148) 3,421 9,803 4,705 4,718 4,039

An instance is “Easy” if cplex-d solves in 6 50,000 nodes,
“Medium” in 6 500,000 nodes, “Hard” otherwise

PC, SB+PC and SB+ML are competing, lower is better for all three
criteria, and best is in bold

Elias Khalil (Georgia Tech) Learning to Branch in MIP February 16, 2016 18 / 21

Head-to-head Comparisons: Win/Tie/Loss

cplex-d sb pc sb+pc

cplex-d

sb 5/264/0/125/123

pc 8/164/0/285/63 68/63/0/326/5

sb+pc 8/227/0/225/60 72/66/7/315/6 15/320/0/125/12

sb+ml 8/267/0/196/49 82/96/7/286/5 21/355/0/95/7 17/300/58/96/6

Table: Each cell has the numbers of: Abs. Win/Win/Tie/Loss/Abs. Loss

Compare branching strategy A to B:

absolute win for A vs. B on instance I ⇔ A solves I, B does not

win for A vs. B on I ⇔ A and B solve I, and A does so in fewer
nodes than B
tie between A and B on I ⇔ A and B solve I in same num. of nodes

Elias Khalil (Georgia Tech) Learning to Branch in MIP February 16, 2016 19 / 21

Head-to-head Comparisons: Win/Tie/Loss

cplex-d sb pc sb+pc

cplex-d

sb 5/264/0/125/123

pc 8/164/0/285/63 68/63/0/326/5

sb+pc 8/227/0/225/60 72/66/7/315/6 15/320/0/125/12

sb+ml 8/267/0/196/49 82/96/7/286/5 21/355/0/95/7 17/300/58/96/6

Table: Each cell has the numbers of: Abs. Win/Win/Tie/Loss/Abs. Loss

Compare branching strategy A to B:

absolute win for A vs. B on instance I ⇔ A solves I, B does not

win for A vs. B on I ⇔ A and B solve I, and A does so in fewer
nodes than B
tie between A and B on I ⇔ A and B solve I in same num. of nodes

Elias Khalil (Georgia Tech) Learning to Branch in MIP February 16, 2016 19 / 21

Head-to-head Comparisons: Win/Tie/Loss

cplex-d sb pc sb+pc

cplex-d

sb 5/264/0/125/123

pc 8/164/0/285/63 68/63/0/326/5

sb+pc 8/227/0/225/60 72/66/7/315/6 15/320/0/125/12

sb+ml 8/267/0/196/49 82/96/7/286/5 21/355/0/95/7 17/300/58/96/6

Table: Each cell has the numbers of: Abs. Win/Win/Tie/Loss/Abs. Loss

Compare branching strategy A to B:

absolute win for A vs. B on instance I ⇔ A solves I, B does not

win for A vs. B on I ⇔ A and B solve I, and A does so in fewer
nodes than B
tie between A and B on I ⇔ A and B solve I in same num. of nodes

Elias Khalil (Georgia Tech) Learning to Branch in MIP February 16, 2016 19 / 21

Head-to-head Comparisons: Win/Tie/Loss

cplex-d sb pc sb+pc

cplex-d

sb 5/264/0/125/123

pc 8/164/0/285/63 68/63/0/326/5

sb+pc 8/227/0/225/60 72/66/7/315/6 15/320/0/125/12

sb+ml 8/267/0/196/49 82/96/7/286/5 21/355/0/95/7 17/300/58/96/6

Table: Each cell has the numbers of: Abs. Win/Win/Tie/Loss/Abs. Loss

Compare branching strategy A to B:

absolute win for A vs. B on instance I ⇔ A solves I, B does not

win for A vs. B on I ⇔ A and B solve I, and A does so in fewer
nodes than B
tie between A and B on I ⇔ A and B solve I in same num. of nodes

Elias Khalil (Georgia Tech) Learning to Branch in MIP February 16, 2016 19 / 21

Head-to-head Comparisons: Win/Tie/Loss

cplex-d sb pc sb+pc

cplex-d

sb 5/264/0/125/123

pc 8/164/0/285/63 68/63/0/326/5

sb+pc 8/227/0/225/60 72/66/7/315/6 15/320/0/125/12

sb+ml 8/267/0/196/49 82/96/7/286/5 21/355/0/95/7 17/300/58/96/6

Table: Each cell has the numbers of: Abs. Win/Win/Tie/Loss/Abs. Loss

Compare branching strategy A to B:

absolute win for A vs. B on instance I ⇔ A solves I, B does not

win for A vs. B on I ⇔ A and B solve I, and A does so in fewer
nodes than B
tie between A and B on I ⇔ A and B solve I in same num. of nodes

Elias Khalil (Georgia Tech) Learning to Branch in MIP February 16, 2016 19 / 21

Future Directions

Adaptive learning w.r.t. the evolution of the search

Fully online or offline learning

Most decisions in the MIP solver are inherently heuristic
I Can we use data and ML to make better informed decisions?

Figure: Cut Selection Strategy in SCIP (slide from [Wolter, 2006])

Cut Selection Strategy

. Efficacy, i.e., distance of the hyperplane to the LP sol er

. Orthogonality with respect to the other cuts or

. Parallelism with respect to the objective function pr

⇒ Select cuts with largest value of
er + wo ∗ or + wp ∗ pr

Weights of the criteria can be adjusted

. ORTHOFAC = 1.0

. OBJPARALFAC = 0.0001

8 / 36

Elias Khalil (Georgia Tech) Learning to Branch in MIP February 16, 2016 20 / 21

Future Directions

Adaptive learning w.r.t. the evolution of the search

Fully online or offline learning

Most decisions in the MIP solver are inherently heuristic
I Can we use data and ML to make better informed decisions?

Figure: Cut Selection Strategy in SCIP (slide from [Wolter, 2006])

Cut Selection Strategy

. Efficacy, i.e., distance of the hyperplane to the LP sol er

. Orthogonality with respect to the other cuts or

. Parallelism with respect to the objective function pr

⇒ Select cuts with largest value of
er + wo ∗ or + wp ∗ pr

Weights of the criteria can be adjusted

. ORTHOFAC = 1.0

. OBJPARALFAC = 0.0001

8 / 36

Elias Khalil (Georgia Tech) Learning to Branch in MIP February 16, 2016 20 / 21

Future Directions

Adaptive learning w.r.t. the evolution of the search

Fully online or offline learning

Most decisions in the MIP solver are inherently heuristic

I Can we use data and ML to make better informed decisions?

Figure: Cut Selection Strategy in SCIP (slide from [Wolter, 2006])

Cut Selection Strategy

. Efficacy, i.e., distance of the hyperplane to the LP sol er

. Orthogonality with respect to the other cuts or

. Parallelism with respect to the objective function pr

⇒ Select cuts with largest value of
er + wo ∗ or + wp ∗ pr

Weights of the criteria can be adjusted

. ORTHOFAC = 1.0

. OBJPARALFAC = 0.0001

8 / 36

Elias Khalil (Georgia Tech) Learning to Branch in MIP February 16, 2016 20 / 21

Future Directions

Adaptive learning w.r.t. the evolution of the search

Fully online or offline learning

Most decisions in the MIP solver are inherently heuristic
I Can we use data and ML to make better informed decisions?

Figure: Cut Selection Strategy in SCIP (slide from [Wolter, 2006])

Cut Selection Strategy

. Efficacy, i.e., distance of the hyperplane to the LP sol er

. Orthogonality with respect to the other cuts or

. Parallelism with respect to the objective function pr

⇒ Select cuts with largest value of
er + wo ∗ or + wp ∗ pr

Weights of the criteria can be adjusted

. ORTHOFAC = 1.0

. OBJPARALFAC = 0.0001

8 / 36
Elias Khalil (Georgia Tech) Learning to Branch in MIP February 16, 2016 20 / 21

The End

Thanks!
Questions?

Elias Khalil
elias.khalil@cc.gatech.edu

Elias Khalil (Georgia Tech) Learning to Branch in MIP February 16, 2016 21 / 21

elias.khalil@cc.gatech.edu

Features Description

Feature Description Count Reference

Static Features (18)

Objective function coeffs. Value of the coefficient (raw, positive only, negative only) 3
Num. constraints Number of constraints that the variable participates in (with a non-zero coefficient) 1

Stats. for constraint degrees
The degree of a constraint is the number of variables that participate in it. A variable may participate in
multiple constraints, and statistics over those constraints’ degrees are used. The constraint degree is
computed on the root LP (mean, stdev., min, max)

4

Stats. for constraint coeffs. A variable’s positive (negative) coefficients in the constraints it participates in (count, mean, stdev., min,
max) 10

Dynamic Features (54)

Slack and ceil distances min{x̌i
j − bx̌i

jc, dx̌i
je − x̌i

j} and dx̌i
je − x̌i

j 2

Pseudocosts Upwards and downwards values, and their corresponding ratio, sum and product, weighted by the
fractionality of xj

5 (Achterberg
2009)

Infeasibility statistics Number and fraction of nodes for which applying SB to variable xj led to one (two) infeasible children
(during data collection) 4

Stats. for constraint degrees A dynamic variant of the static version above. Here, the constraint degrees are on the current node’s LP.
The ratios of the static mean, maximum and minimum to their dynamic counterparts are also features 7

Min/max for ratios of
constraint coeffs. to RHS Minimum and maximum ratios across positive and negative right-hand-sides (RHS) 4

(Alvarez,
Louveaux, and
Wehenkel 2014)

Min/max for one-to-all
coefficient ratios

The statistics are over the ratios of a variable’s coefficient, to the sum over all other variables’ coefficients,
for a given constraint. Four versions of these ratios are considered: positive (negative) coefficient to sum of
positive (negative) coefficients

8
(Alvarez,
Louveaux, and
Wehenkel 2014)

Stats. for active constraint
coefficients

An active constraint at a node LP is one which is binding with equality at the optimum. We consider 4
weighting schemes for an active constraint: unit weight, inverse of the sum of the coefficients of all
variables in constraint, inverse of the sum of the coefficients of only candidate variables in constraint, dual
cost of the constraint. Given the absolute value of the coefficients of xj in the active constraints, we
compute the sum, mean, stdev., max. and min. of those values, for each of the weighting schemes. We also
compute the weighted number of active constraints that xj is in, with the same 4 weightings

24 (Patel and
Chinneck 2007)

Table 1: Description of the atomic features.

Experimental Results
Setup. We use the C API of IBM ILOG CPLEX 12.6.1
to implement various strategies using control callbacks, in
single-thread mode. To evaluate the performance of any vari-
able selection strategy A, the strategy is run on a set of in-
stances with a time cut-off of tmax seconds. An instance I is
solved by strategy A if and only if the run terminates within
the tolerance gaps (we use default CPLEX values). If an in-
stance I is not solved by the time cut-off, it is referred to
as unsolved. All experiments were run on a cluster of four
64-core machines with AMD 2.4 GHz processors and 264
GB of memory; each run was limited to 2 GB of memory,
and no run failed for memory reasons.

To isolate the effects of changing the variable selection
strategy, we provide the optimal value as upper cutoff
to CPLEX before the start of the search. This measure
reduces the effect of node selection on the search, as the
primal bound is given by the upper cutoff, and the order
in which nodes are expanded has little impact on the tree
itself. Additionally, cuts are allowed at the root only, and
primal heuristics are disabled. These measures are common
in branching studies (Linderoth and Savelsbergh 1999;
Fischetti and Monaci 2012; Karzan, Nemhauser, and
Savelsbergh 2009), since they eliminate the interference
between variable selection and other components of the
solver, such as node selection. This also reduces perfor-
mance variability, which we discuss in the next section.

Instances. We use the “Benchmark” set from MIPLIB2010
as our test set; we refer to (Koch et al. 2011) for details. This

set was designed to span a variety of problem classes, appli-
cations, dimensions, levels of difficulty, etc., and is routinely
used for evaluating branching strategies. The “Benchmark”
set consists of 87 instances that can be solved by at least one
commercial solver within 2 hours on a high-end PC. Note
that since we turn off multi-threading and cuts beyond the
root, we cannot expect to solve all instances within 2 hours.
Hence, we set the time cut-off tmax to 5 hours (18,000 sec-
onds). Three infeasible instances are excluded.

For each of the 84 instances we consider, we
run every strategy with 10 different random seeds,
for every variable selection strategy. Recent stud-
ies have shown that MIP solvers can be very sen-
sitive to seemingly performance-neutral perturba-
tions to their inputs (Lodi and Tramontani 2013;
Achterberg and Wunderling 2013). Therefore, runs
with different seeds are necessary for obtaining meaningful
results. In CPLEX, such perturbations can be induced by
changing CPLEX’s internal random seed via its C API.

Branching strategies. We experiment with five strategies.
CPLEX-D is the strategy that branches on the variable cho-
sen by the solver with its default variable selection rule (as
set by CPX PARAM VARSEL); this is done within a call-
back, as for all other strategies. Up until 2013, CPLEX de-
velopers report that the default selection rule is “a version of
hybrid branching” (Achterberg and Wunderling 2013). SB
refers to Strong Branching, while PC refers to pseudocost
branching with SB initialization of the PC values (Linderoth
and Savelsbergh 1999). SB+PC is a hybrid of SB for the first

Performance Profiles

Ratio to best
1 2 3 4 5 6 7 8 9 10

F
ra

ct
io

n
of

 in
st

an
ce

s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Performance profile for Nodes

cplex-d
sb
pc
sb+pc
sb+ml

Ratio to best
1 2 3 4 5 6 7 8 9 10

F
ra

ct
io

n
of

 in
st

an
ce

s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Performance profile for Time

cplex-d
sb
pc
sb+pc
sb+ml

Ratio to best
1 2 3 4 5 6 7 8 9 10

F
ra

ct
io

n
of

 in
st

an
ce

s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Performance profile for Nodes

cplex-d
sb
pc
sb+pc
sb+ml

Head-to-head Comparisons: Node Ratios

cplex-d sb pc sb+pc sb+ml

cplex-d 1.39 (389) 0.64 (449) 0.84 (452) 0.97 (463)

sb 0.72 (389) 0.47 (389) 0.61 (388) 0.76 (389)

pc 1.56 (449) 2.11 (389) 1.34 (445) 1.59 (450)

sb+pc 1.20 (452) 1.63 (388) 0.75 (445) 1.22 (454)

sb+ml 1.03 (463) 1.32 (389) 0.63 (450) 0.82 (454)

Head-to-head Comparisons: Win/Tie/Loss (averaging over
seeds)

cplex-d sb pc sb+pc

cplex-d

sb 45/0/20

pc 20/0/45 5/0/60

sb+pc 28/0/37 8/0/57 51/0/14

sb+ml 33/0/32 10/0/55 55/0/10 46/6/13

Table: Win-tie-loss counts for every pair of strategies, for the number of nodes. A
triplet in a cell in row A and column B expresses the number of wins for A over
B, the number of ties, and the number of losses of A to B, respectively, w.r.t. to
the shifted geometric mean of the number of nodes. A wins over B on instance I
iff the mean number of nodes of A over the random seeds on I is strictly less
than that of B; losses and ties are defined analogously.

Analysis of Feature Ranking Models

Compare ranking models across instances

For each model, consider the ranking of the features by their absolute
weight in the linear model

Similarity of two models measured by Spearman’s rank correlation
coefficient between their respective feature weight rankings

Spearman's Rank Correlation Coefficient
-0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Analysis of Feature Ranking Models

The 10 features that appear the most in the top K = 10 features over
models, sorted by that count (corresponding column is bold in the
header). The counts for other values of K are also shown. There are
2700 features in total. Static features are marked by (S); unmarked
features are dynamic.

Feature 1 3 5 10 20 100

PC Product 1 10 17 23 30 37

PC Product x PC Product 6 10 11 17 24 38

PC Product x Mean Constraint Degree 1 2 5 13 19 33

PC Product x Max. Constraint Degree 0 0 3 13 19 34

PC Product x Min. Constraint Degree 0 3 6 13 21 34

PC Product x Max. Absolute Coefficient in Active Constraints 2 7 8 13 27 37

PC Product x Mean Absolute Coefficient in Active Constraints 2 4 4 10 25 35

PC Product x Num. Constraints (S) 0 3 5 9 17 28

PC Product x Min. Positive Constraint Coefficient (S) 1 1 2 9 18 32

PC Product x Max. Ratio of Constraint Degree (static/dynamic) 0 3 4 9 16 34

Results with cuts and heuristics, no upper cutoff

“Easy” if CPLEX solves in 6 50,000 nodes, “Medium” in 6 500,000
nodes, “Hard” otherwise

PC, SB+PC and SB+ML are competing, lower is better for all three
criteria, and best is in bold

cplex-d sb pc sb+pc sb+ml

Instances unsolved

All (538) 28 139 55 59 54

Easy (318) 3 23 21 22 20

Medium (140) 18 74 24 26 27

Hard (80) 7 42 10 11 7

Num. nodes

All (538) 25,407 17,909 43,120 36,235 32,948

Easy (318) 3,643 3,794 7,371 5,386 5,358

Medium (140) 165,188 91,279 260,851 266,497 217,306

Hard (80) 2,144,179 491,557 2,062,439 2,142,617 1,649,930

Total time

All (538) 681 2,273 1,027 1,229 1,423

Easy (318) 203 821 385 498 630

Medium (140) 2,978 9,942 3,767 4,077 4,210

Hard (80) 6,223 9,815 5,192 5,461 5,423

Head-to-head Comparisons: Win/Tie/Loss

cplex-d sb pc sb+pc

cplex-d

sb 5/259/0/135/116

pc 20/183/0/280/47 98/60/0/325/14

sb+pc 21/216/0/242/52 94/96/1/288/14 22/264/0/193/26

sb+ml 22/231/0/231/48 98/108/1/277/13 23/313/0/148/22 24/260/55/145/19

Definitions:

absolute win for A v/s B on instance I ⇔ A solves I, B does not

win for A v/s B on I ⇔ A and B solve I, and A does so in < nodes
than B
tie between A and B on I ⇔ A and B solve I in same num. of nodes

Head-to-head Comparisons: Node Ratios

cplex-d sb pc sb+pc sb+ml

cplex-d 1.38 (394) 0.64 (463) 0.79 (458) 0.84 (462)

sb 0.72 (394) 0.48 (385) 0.65 (385) 0.67 (386)

pc 1.56 (463) 2.09 (385) 1.24 (457) 1.32 (461)

sb+pc 1.27 (458) 1.55 (385) 0.81 (457) 1.08 (460)

sb+ml 1.20 (462) 1.49 (386) 0.76 (461) 0.92 (460)

Table: Ratios for the shifted geometric means (shift 10) over nodes on instances
solved by both strategies. The first value in a cell in row A and column B is the
ratio of the average number of nodes used by A to that of B. The second value is
the number of instances solved by both A and B.

Performance Profiles

Ratio to best
1 2 3 4 5 6 7 8 9 10

F
ra

ct
io

n
of

 in
st

an
ce

s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Performance profile for Nodes

cplex-d
sb
pc
sb+pc
sb+ml

Ratio to best
1 2 3 4 5 6 7 8 9 10

F
ra

ct
io

n
of

 in
st

an
ce

s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Performance profile for Time

cplex-d
sb
pc
sb+pc
sb+ml

Ratio to best
1 2 3 4 5 6 7 8 9 10

F
ra

ct
io

n
of

 in
st

an
ce

s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Performance profile for Nodes

cplex-d
sb
pc
sb+pc
sb+ml

Pseudocost Branching (PC)

Goal: Imitate SB without many simplex iterations.

Record change in objective value over time, and use historical
averages as proxy for SB scores.

Objective increase per unit change in xj at Ni when branching down:

ς−i ,j =
∆−

j

f −j

with f −j = x̌ ij − bx̌ ij c
Take average over those events :

Ψ−
j =

∑
ς−i ,j

times branched down on xj

PC score at some node:

sj = score(f −j Ψ−
j , f

+
j Ψ+

j

)

References I

Achterberg, T. (2009).
Constraint Integer Programming.
PhD thesis, Technische Universität Berlin.

Achterberg, T. and Berthold, T. (2009).
Hybrid branching.
In Integration of AI and OR Techniques in Constraint Programming for Combinatorial
Optimization Problems, pages 309–311. Springer.

Alvarez, A. M., Louveaux, Q., and Wehenkel, L. (2014).
A supervised machine learning approach to variable branching in branch-and-bound.
Technical Report, Université de Liège.

Fischetti, M. and Monaci, M. (2012).
Branching on nonchimerical fractionalities.
Operations Research Letters, 40(3):159–164.

He, H., Daumé III, H., and Eisner, J. (2014).
Learning to search in branch-and-bound algorithms.
In Advances in Neural Information Processing Systems.

References II

Hendel, G. (2015).
Enhancing MIP branching decisions by using the sample variance of pseudo costs.
In Integration of AI and OR Techniques in Constraint Programming, volume 9075, pages
199 – 214.

Joachims, T. (2002).
Optimizing search engines using clickthrough data.
In ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pages 133–142.

Joachims, T. (2006).
Training linear SVMs in linear time.
In ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pages 217–226.

Kılınç-Karzan, F., Nemhauser, G. L., and Savelsbergh, M. W. (2009).
Information-based branching schemes for binary linear mixed integer problems.
Mathematical Programming Computation, 1(4):249–293.

Patel, J. and Chinneck, J. W. (2007).
Active-constraint variable ordering for faster feasibility of mixed integer linear programs.
Mathematical Programming, 110(3):445–474.

References III

Wolter, K. (2006).
Cutting plane separators in SCIP.

Related Work

[Achterberg and Berthold, 2009],[Hendel, 2015]: recent PC-based
strategies

[Kılınç-Karzan, Savelsbergh and Nemhauser, 2009]: collect
information on which variables are likely to lead to fathomed child
nodes quickly, then restart solve and branch on those

[He et al., 2014]: ML (classification) for node selection; offline, can
prune optimum

[Alvarez et al., 2014]: ML (regression) for variable selection; offline,
slow and modest results

	The Branching Problem
	A Machine Learning Framework
	Experimental Results
	Appendix

